Asymmetric PDLLA membranes containing Bioglass® for guided tissue regeneration: characterization and in vitro biological behavior.

نویسندگان

  • Ana I Leal
  • Sofia G Caridade
  • Jinling Ma
  • Na Yu
  • Manuela E Gomes
  • Rui L Reis
  • John A Jansen
  • X Frank Walboomers
  • João F Mano
چکیده

OBJECTIVE In the treatment of periodontal defects, composite membranes might be applied to protect the injured area and simultaneously stimulate tissue regeneration. This work describes the development and characterization of poly(d,l-lactic acid)/Bioglass® (PDLLA/BG) composite membranes with asymmetric bioactivity. We hypothesized that the presence of BG microparticles could enhance structural and osteoconductivity performance of pure PDLLA membranes. METHODS The membranes were prepared by an adjusted solvent casting method that promoted a non-uniform distribution of the inorganic component along the membrane thickness. In vitro bioactive behavior (precipitation of an apatite layer upon immersion in simulated body fluid, SBF), SEM observation, FTIR, swelling, weight loss and mechanical properties of the developed biomaterials were evaluated. Cell behavior on the membranes was assessed using both human bone marrow stromal cells and human periodontal ligament cells. RESULTS Just the BG rich face of the composite membranes induced the precipitation of bone-like apatite in SBF, indicating that this biomaterial exhibit asymmetric osteoconductive properties. SEM images, DNA content and metabolic activity quantification revealed an improved cell adhesion and proliferation on the composite membranes. Composite membranes also stimulated cell differentiation, mineralization, and production of extracellular matrix and calcium nodules, suggesting the positive effect of adding the bioactive microparticles in the PDLLA matrix. SIGNIFICANCE The results indicate that the proposed asymmetric PDLLA/BG membranes could have potential to be used in guided tissue regeneration therapies or in orthopedic applications, with improved outcomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bone tissue engineering using a combination of polymer/Bioglass

Translational research in bone tissue engineering is essential for ‘bench to bedside’ patient benefit. However, the idea combination of stem cells and biomaterial scaffolds for bone repair/regeneration is still unclear. The aim of this study was to investigate the osteogenic capacity of a combination of poly(DL-lactic acid) (PDLLA) porous foams containing 5 and 40 wt% of Bioglass ® particles wi...

متن کامل

Development and in vitro characterisation of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications.

Bioactive and bioresorbable composite materials were fabricated using macroporous poly(DL-lactide) (PDLLA) foams coated with and impregnated by bioactive glass (Bioglass) particles. Stable and homogeneous Bioglass coatings on the surface of PDLLA foams as well as infiltration of Bioglass particles throughout the porous network were achieved using a slurry-dipping technique in conjunction with p...

متن کامل

Stratified scaffolds for osteochondral tissue engineering applications: electrospun PDLLA nanofibre coated Bioglass®-derived foams.

This work focuses on designing bilayered constructs by combining electrospun poly-DL-Lactide (PDLLA) fibers and Bioglass®-derived scaffolds for development of osteochondral tissue replacement materials. Electrospinning was carried out using a solution of 5 wt/v% PDLLA in dimethyl carbonate. The PDLLA layer thickness increased from 2 to 150 µm with varying electrospinning time. Bioactivity studi...

متن کامل

Scaffolds of PDLLA/Bioglass 58S Produced via Selective Laser Sintering

Scaffolds of PDLLA were produced to be implemented in maxilofacial surgeries inducing bone repair and regeneration. To prepare these scaffolds, bioglass (BG58S) was synthesized by sol-gel method, in order to be applied as osteoconductive dispersed particles in PDLLA matrix. Once presenting greater facility on parts fabrication, this polymeric matrix enables complex geometries production besides...

متن کامل

Asymmetric Collagen/chitosan Membrane Containing Minocycline-loaded Chitosan Nanoparticles for Guided Bone Regeneration

Infections caused by pathogens colonization at wound sites in the process of bone healing are considered as one of the major reasons for the failure of guided bone regeneration (GBR). The objective of this study was to prepare a novel asymmetric collagen/chitosan GBR membrane containing minocycline-loaded chitosan nanoparticles. The morphologies of the membranes and nanoparticles were observed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Dental materials : official publication of the Academy of Dental Materials

دوره 29 4  شماره 

صفحات  -

تاریخ انتشار 2013